

اختبار (الفصل الثالث) في مادة العلوم الفيزيائية

التمرين الاول: (50 نقاط)

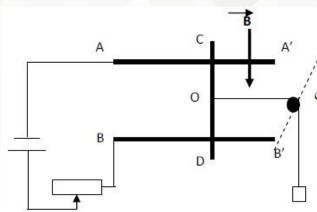
في حصة عملي الكيمياء قام أحمد بوضع كتلة m من بر منغنات البوتاسيوم الصلبة في كأس به $V_1 = 0.5L$ من $V_1 = 0.5L$ من الماء المقطر ليحصل على محلول S_1 من S_2 من S_3 أذو اللون البنفسجي ثم قدم المحلول للأستاذ، أر اد الأستاذ وبقية الطلبة معرفة مقدار الكتلة التي استخدمها أحمد وذلك بو اسطة المعايرة بحلول كبريتات الحديد الثناني C = 0.05mol/L ذو اللون الأخضر الفاتح بتركيز C = 0.05mol/L

- في البداية أخذ الأستاذ كمية من المحلول S_1 وخففها 50 مرة، ثم أخذ $V_2=100ml$ من المحلول المخفف (وليكن $V_2=100ml$ ثم بدأ بالمعايرة. S_2) وأضاف لها قطرات من حمض الكبريت المركز S_2
 - 1- أرسم بشكل تقريبي التركيب التجريبي المستعمل لعملية المعايرة.
 - 2- كيف نستطيع التعرف على نقطة التكافؤ عملياً ؟
 - 3- عرف نقطة التكافؤ. ثم حدد المتفاعل المحد في كل مرحلة (قبل التكافؤ- في نقطة التكافؤ- بعد نقطة التكافؤ).
 - $(Fe^{3+}/Fe^{2\oplus})$ و (MnO_4^-/Mn^{2+}) : هي: (MnO_4^-/Mn^{2+}) و (MnO_4^-/Mn^{2+})
 - 5- أكتب معادلة التفاعل أكسدة-إرجاع ثم المعادة الإجمالية لتفاعل المعايرة الحادث.
 - 6- بين الفرد المؤكسد والفرد المرجع علل.
- 7- أنجز جدول تقدم التفاعل ثم استنتج التركيز C_2 للمحلول S_2 علماً أن حجم كبريتات الحديد الثنائي اللازم لبلوغ نقطة التكافؤ هو $V_{eq}=13ml$
 - S_1 استنتج تركيز المحلول الأصلي S_1 .

التمرين الثانى: (05 نقاط)

مركب عضوي A أحادي الوظيفة و غير حلقي صيغته العامة $C_nH_{2n+2}O$ نسبة الاكسجين فيه 36.67% عضوي A أحاديئية المجملة لهذا المركب

2-أعط كافة الصيغ المفصلة الممكنة لهذا المركب مع ذكر الاسم النظامي و العائلة و الصنف


 (K^+, MnO_4^-) في الكسدة مقتصدة ل 6.0g من المركب السابق بو اسطة محلول لبيكرومات البوتاسيوم و (K^+, MnO_4^-) في وجود وسط حمضي فينتج مركب B يعطي نتيجة ايجابية مع محلول DNPH ويتفاعل مع محلول نترات الفضة النشادرية

- حدد طبيعة الكيميائية لهذا المركب ${\bf B}$ واستنتج صيغته المجملة , المفصلة و اذكر اسمه
 - اكتب المعادلتين النصفيتين للأكسدة و الإرجاع ثم استنتج معادلة الأكسدة الارجاعية
 - ادرج جدولا لتقدم هذا التفاعل
- C=0.1 mol/l يساوي البوتاسيوم اللازم لتحقيق التوازن علما أن تركيزه يساوي C=0.1 mol/l

مدرست القيم المضاريت

$(Cr_2O_7^{2-}/Cr^{3+})$, (B / A) لا الداخلتان في التفاعل (Ox/Red) تعطى الثنائيتين

التمرين الثالث: (50 نقاط)

قضيب DC كتلته M=10 وطوله L=8 cm وطوله M=10 و كتلته الإنزلاق معناطيسي على سكتين أفقيتين 'AA و 'B=500 وموضوع في حقل مغناطيسي منتظم ، موجه نحو الأسفل شدته B=500، يمر في القضيب التيار E=5A من Dالى D.

 $g = 9.8 N. Kg^{-1}$ نأخذ في كامل التمرين

1 - عين و ارسم القوى المؤثرة على القضيب DC

2 _ هل يمكن للقضيب أن يكون متوازنا في هذه الظروف؟ علل

3 ـ ما هي القوة الموازية للسكتين اللازم تطبيقها في O منتصف DC ليبقى القضيب متوازنا؟

4 ـ نربط في O خيط مهمل الكتلة و عديم الإمتطاط يمر على محز بكرة خفيفة، وفي طرفه الثاني نعلق جسم كتلته M'=15g

_ عين خصائص القوة المطبقة في O من طرف الخيط على القضيب، هل يتوازن القضيب؟ برر اجابتك

التمرين الرابع: (05 نقاط)

أكمل الجدول:

العائلة أو الوظيفة	الإسم	الكتابة الطبولوجية	الصيغة نصف المفصلة	الصيغة المُجملة
			CH ₂ = CH - CH - CH ₃	
			CH₂ I CH₃	
	3,4 - ثنائ <i>ي</i> ميتيل بنت-1- ين			
			CH ₃ - CH - C O-CH ₃	
			CH ₃ – CH ₂ – CH – CH ₂ OH CH ₂	
			CH₃	

مع تمنياتي لكم بالنجاح استاد المادة